
Resource Utilization of

Middleware Components

in Embedded Systems

3 Resource Utilization of Middleware Components in Embedded Systems

Introduction

System memory, CPU, and network

resources are critical to the operation and

performance of any software system. These

system resources impact performance,

stability, deployment, and scalability of

software systems. Performance will

dramatically degrade as memory pages are

swapped to disk, applications are forced to

wait for CPU time, and network packet loss

increases. Stability suffers as process

execution becomes less deterministic and

applications fail to allocate memory or

obtain CPU time. System deployment

becomes more complex, when Size, Weight,

and Power requirements determine hardware

selection and the distribution of software

processes. Scalability is impacted as it

becomes harder, or impossible to add new

features, users, or connections to an existing

system that has maxed out its available

memory, CPU, or network bandwidth.

A typical approach to software development

is to consider the constraints of Size,

Weight, and Power (and disk, memory,

CPU, and network) during architecture,

design, and implementation phases of

software development. Software controls

can be put in place, and resource usage can

be monitored throughout the software

development process. Software and designs

can evolve as necessary to meet resource

constraints.

This process can work well, when a software

development team has control of all the

software. And in typical embedded

applications, this process is the norm.

Software projects might make use of COTS

hardware, and sometimes a COTS operating

system, but all other software components

for infrastructure, communications, and the

remaining functional requirements are

written to meet the constraints of disk,

memory, CPU, and network resources.

Gaining insight into resource utilization

within your infrastructure components is

necessary as embedded systems are

developed and deployed, but this can be

particularly challenging when using

commercial software. How do you gain

insight into the resource utilization of a

“black box” component? How do you

control the memory or CPU utilization?

Using the Data Distribution Service (DDS)

technology as an example, this paper

describes the concepts and tools necessary to

determine and analyze the resource

utilization of middleware components in

embedded systems.

DDS Background

The Data Distribution Service (DDS) is a

standardized communication middleware

technology, and there are a number of

commercial and open source

implementations available. Because of it’s

flexibility, configurability, and performance,

DDS is used across a wide variety of

industries, including many embedded

applications in DoD, space, medical,

consumer electronics, energy, and

environmental monitoring industries (among

others).

A DDS implementation will typically

include a library (or set of libraries) that is

linked into each application that will

4 Resource Utilization of Middleware Components in Embedded Systems

communicate using DDS. For some

implementations, a daemon or server

process must be running for

communications, but this is not required by

all implementations.

The DDS technology allows the application

to define the data types that will be used for

communication at compile time. These data

types are defined in a language independent

format, and compiled into type-specific

DDS code, allowing the software developer

to read and write data in a language-natural

way. For example, C programmers will use

C structures, while Java programmers will

use classes.

The DDS technology includes an automatic

and dynamic discovery process. Each

application using DDS for communications

will discover all other applications using

DDS, without requiring any configuration of

IP addresses or port numbers.

DDS is highly configurable. The standards

specify 22 Quality of Service (QoS) policies

that are used to configure the behavior of

data communications. For example, the

reliability, latency, durability, saved history,

and organization of data may be configured.

These configurations settings can effect

resource utilization, some directly, some

indirectly.

Many DDS implementations extend this

basic set of QoS policies for enhanced

control.

System Resources – how are they

consumed?

Memory

There are a few aspects to system memory

consumption, including static or persistent

memory and run-time memory. Static or

persistent memory is consumed by

executables, libraries, and data files. Run-

time memory is consumed by code and

static data, the stack, and the heap.

A typical DDS distributed software

application will have the following aspects

that may consume memory:

1. Executable Code – This category

includes application code, libraries, and

external daemons or server processes. DDS

applications will include type specific

generated code, DDS libraries, and may

include external daemons or server

processes (not all implementations require

this).

2. Transport – This category may or

may not be appropriate, depending on how

the application communicates with its

distributed peers. Typical UDP or TCP

transports will use buffers to collect data

written or received. Many DDS

implementations allow the application to

select and configure transports. For

example, UDP, TCP, shared memory, or

serial, all of which have their own

configuration aspects.

3. Locally Created Entities – The

category is focused on abstracted

middleware components. For example, the

DDS API requires applications to create

entities to read and write data. A publishing

5 Resource Utilization of Middleware Components in Embedded Systems

application will create a DDS

DomainParticipant (to participate on the

DDS network) a DDS DataWriter (to write

data of a specific type), and a DDS Topic (to

logically write data to). Each of these

created entities will consume some amount

of memory.

4. Discovery – this category includes

memory required for discovery of peer

participants. In DDS, each application (or

possibly a DDS daemon or server process)

will keep bookkeeping information about

discovered peer DDS applications and

entities.

5. History Caches – This category

includes buffers used by the application (or

by the middleware) to store sent or received

data. DDS contains QoS policies to

configure history caches for readers and

writers.

CPU

There are many design decisions that will

impact the resulting CPU utilization of a

software application.

Threading policies is one example. With

multi-core CPU’s, it is advantageous to

parallel process where possible.

Communication middleware is an easy place

to take advantage of parallel processing:

one thread to read data, one thread to

manage events (including writing data), and

one application thread, is just one way to

take advantage of multiple CPU’s with one

process. However, when deploying on a

single-core CPU, especially a low-powered

device, threaded applications will require

more context switching, in addition to using

additional memory. In these environments,

less CPU usage can be reduced by deploying

a single threaded application.

Another architectural design that impacts

CPU utilization is busy waiting versus

asynchronous notifications. A

communication infrastructure like DDS can

offer both design options to system

developers.

Network

Data encoding on the wire will impact

network utilization: binary formats will

generally be more compact than text

formats.

Data batching and data aggregation

algorithms may reduce network overhead

for each message sent. Other algorithms

that will impact network usage include the

protocol for discovering peer endpoints, and

reliability protocol design for handshaking,

ack/nacks and re-transmission of missed

data packets.

When the distributed software contains one

or few writers writing to many readers, the

selection of multicast versus unicast will

also impact network usage.

Inter-process communications on one

machine can be designed to use a local

communications mechanism and avoid the

network stack. Some DDS implementations

provide on-machine transports in addition to

network transports. There are significant

benefits to being able to use the same

communication protocols for all on-machine

and off-machine communications, including

the flexibility to redistribute software

processes across available hardware without

significant software re-writes.

6 Resource Utilization of Middleware Components in Embedded Systems

Plan early, Monitor often

In any software development process, there

is an architecture and design phase, and

implementation phase, and a test/integration

phase (sometimes multiple phases within

each). Changes in design and

implementation will happen throughout each

of these phases, and in many cases, these

changes will be due to resource utilization

and limitations. Due to the cost growth of

rework in later phases, it is important to plan

and monitor resource usage throughout the

development process. This is only possible

if there are tools to estimate usage (for those

architecture and design phases), and

measure usage (during the implementation

and test phases).

Managing Resource Usage

As software architects and developers, we

strive for a balance between conflicting

requirements. For example: the balance

between performance and memory usage, or

the balance between flexibility and code

size. With respect to infrastructure software

components, it is critical to not only balance

between conflicting requirements, but to

allow application designers to control which

requirements have more importance for any

particular application.

A wide range of architectural and design

decisions will impact resource utilization,

and many of these apply to infrastructure

components.

Architecture, distribution, and segregation of

software components will impact resource

utilization. If we look at a DDS example,

segregating software components that do not

need to communicate into separate DDS

Domains will reduce the amount of

discovery memory and network traffic for

all DDS applications.

Data architecture will also impact memory

and network usage. For example, fixed

sized data types allow applications and

infrastructure components to pre-allocate

space to hold all written and/or received

data, but may waste space if data is truly

dynamic in size. Unbounded data types

(which may include unbounded strings or

lists) may use less memory and network

bandwidth, but require dynamic memory

allocation during application execution.

For example, consider the follow 2 data

types (these data types are defined using

IDL – a language independent format for

specifying data:

struct A_fixed {

 String<128> color;

}

struct A_unbounded {

 String color;

}

Depending on design constraints and run-

time usage, one data type may be preferred

over the other.

When using DDS, these data types will be

compiled into language specific, type

specific code, including the data type

declaration. The following may be the

resulting (generated) C representation of the

data types:

7 Resource Utilization of Middleware Components in Embedded Systems

struct A_fixed {

 char[128] color;

}

struct A_unbounded {

 char * color;

}

Many DDS implementations are threaded,

and some allow the application to control

the number of threads used, including down

to no additional threads.

The DDS standards specify multiple

notification options (how the application is

notified of events within the infrastructure,

including “data is available to be read”):

asynchronous (call backs), synchronous

(wait on a condition), and polling (calling

get_status()).

Applications may improve CPU utilization

by aggregating data writes. For example in

a threaded DDS implementation, the

application may setup a latency budget (QoS

policy). With a greater than 0 latency

budget, DDS will queue events and reduce

the number of times different threads must

‘wake up’ to perform work. A latency

budget may allow the DDS infrastructure to

delay (up to the configured budget) the

writing of data (for DataWriters) in order to

process multiple messages together, and the

delivery of data (for DataReaders) in order

to notify the application one time for

multiple messages.

Another DDS QoS policy allows reading

applications to filter received data. Some

DDS implementation allow configuration of

this filter – to be applied at the writer, before

data is written to the network, or at the

reader. These options have multiple impacts

on resource utilization. Reading

applications that perform the filter must

‘wake up’ for every message written, even if

that message will be dropped because of a

configured data filter. However, because

data is written to all reading applications, the

data writer may use multicast to reach many

readers with one write on the network.

Writing applications that perform the filter

must unicast data written to only the reading

applications that need to receive it.

Depending on the number of reading

applications and the filter configuration, this

can result in more network traffic than using

multicast and filtering at the reader.

Measuring resource usage

There are two ways to measure resource

utilization for a software component: from

the inside and from the outside. Measuring

from the inside requires instrumentation,

hooks, or another mechanism where the

software component can accurately report is

usage of memory or packets written to a

network. Inside measuring provides a more

accurate measurement of one process or

component.

Measuring from the outside is done using

external tools, for example: ps, top,

tcpdump, or valgrind. Outside

measurements are typically a courser

measurement. For example, the ps, top,

perfmon, and taskmgr tools are not

standardized or well documented, and will

only measure an entire process. These tools

cannot measure the memory or CPU usage

8 Resource Utilization of Middleware Components in Embedded Systems

of one library or other component of the

application.

External tools are available (for typical

desktop environments), and may be used on

any software component, even a commercial

component. However, they are generally a

courser measurement of resource usage.

The most accurate measurements (inside

measurements) can only be obtained in

COTS products that include hooks and/or

instrumentation to allow these

measurements.

Summary

Resource utilization (memory, CPU,

network) is a primary concern when

developing deeply embedded components or

deploying into a Swap constrained

environment. Gaining insight into memory

utilization within your infrastructure

components is necessary for architects and

engineers as they develop and deploy these

systems, but this can be particularly

challenging when using commercial

software. Mismanaged system resources

can lead to reduced scalability, poor

performance, and increased deployment

costs.

It is important to gain insight into the

resource requirements of your software

components, and especially your

infrastructure components. When these

components are highly configurable, it is

also important to understand the impact of

configuration on resource utilization.

The ability to estimate, plan, and monitor

resource utilization using inside

measurements will ultimately reduce the

time required for development and test, as

well as reducing overall project risk.

Figure 1: Example of an inside memory measuring
tool for DDS

Figure 2: Example of an inside memory measuring
tool for DDS

About Twin Oaks Computing

With corporate headquarters located in Castle Rock,

Colorado, USA, Twin Oaks Computing is a company

dedicated to developing and delivering quality

software solutions. We leverage our technical

experience and abilities to provide innovative and

useful services in the domain of data

communications. Founded in 2005, Twin Oaks

Computing, Inc delivered the first version of CoreDX

DDS in 2008. The next two years saw deliveries to

over 100 customers around the world. We continue to

provide world class support to these customers while

ever expanding.

Copyright © 2014 Twin Oaks Computing, Inc.. All rights

reserved. Twin Oaks Computing, the Twin Oaks

Computing and CoreDX DDS Logos, are trademarks or

registered trademarks of Twin Oaks Computing, Inc. or

its affiliates in the U.S. and other countries. Other

names may be trademarks of their respective

owners. Printed in the USA.

Contact

Twin Oaks Computing, Inc.

(720) 733-7906

(855) 671-8754

+33 (0)9 62 23 72 20

755 Maleta Lane

Suite 203

Castle Rock, CO. 80108

www.twinoakscomputing.com

